The Intermediate Temperature Deformation of Ni-Based Superalloys: Importance of Reordering

نویسنده

  • L. Kovarik
چکیده

A number of planar deformation mechanisms, such as microtwinning, a[112] dislocation ribbon, and superlattice intrinsic and superlattice extrinsic stacking fault formation, can operate during the intermediate temperature deformation of nickle-based superalloys. The fundamental, rate-limiting processes controlling these deformation mechanisms are not fully understood. It has been recently postulated that reordering of atoms in the wake of the gliding partial dislocations as they shear the γ′ precipitates within the γ/γ′ microstructure is the limiting process. Experimental evidence that substantiates the validity of the reordering model for the microtwinning mechanism is provided. A conceptual approach to study reordering at the atomic scale using ab-initio calculation methods is also presented. The results of this approach provide a clear conceptualization of the energetics and kinetics of the reordering process, which may be generically important for the aforementioned planar deformation modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys

0079-6425/$ see front matter 2009 Elsevier Lt doi:10.1016/j.pmatsci.2009.03.010 * Corresponding author. E-mail address: [email protected] (L. Kovarik). In Ni-based superalloys, microtwinning is observed as an important deformation mechanism at intermediate temperature and low stress and strain rate conditions. Current knowledge concerning this unusual deformation mode is comprehensively reviewe...

متن کامل

Modeling displacive–diffusional coupled dislocation shearing of c0 precipitates in Ni-base superalloys

In Ni-base superalloys, superlattice extrinsic stacking fault (SESF) shearing of c0 precipitates involves coupled dislocation glide and atomic diffusion. A phase-field model is developed to study this process, in which the free energy of the system is formulated as a function of both displacement and long-range order parameter. The free energy surface is fitted to various fault energy data obta...

متن کامل

Deformation Mechanisms in Ni-base Disk Superalloys at Higher Temperatures

This paper presents results from a research initiative aimed at investigating high temperature creep deformation mechanisms in Ni-base superalloys through a combination of creep experiments, TEM deformation mechanism characterization, and state of the art modeling techniques. The effect of microstructure on dictating creep rate controlling deformation mechanisms was revealed for specimens with ...

متن کامل

High Temperature Nanoindentation of Ni-base Superalloys

Novel techniques for characterizing and assessing the properties of Ni-base superalloys are becoming increasingly important to the accelerated development of new structural alloys and the advancement of physics-based mechanical property models. Instrumented indentation techniques have long served as a useful approach for probing the mechanical response of a wide range of engineering materials. ...

متن کامل

Modeling the Temperature-dependence of Tertiary Creep Damage of a Directionally Solidified Ni-base Superalloy

Directionally solidified (DS) Ni-base superalloys have become a commonly used material in gas turbine components. Controlled solidification during the material manufacturing process leads to a special alignment of the grain boundaries within the material. This alignment results in different material properties dependent on the orientation of the material. When used in gas turbine applications t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009